Anthropogenic emissions have impacted terrestrial forest ecosystem processes in North America since the industrial revolution. With the passage of the Clean Air Act in 1970 in the United States, atmospheric inputs of nitrogen (N) and sulfur (S) into forests in the Appalachian Mountains have declined, which have, potentially, mitigated their effects on processes such as decomposition and nutrient cycling. Activities of microbial extracellular soil enzymes (ESEs) mediate many rate-limiting nutrient transformations in forest soils and play important roles in the decomposition of complex organic compounds. Soils in high-elevation red spruce forests are characterized by low pH and high carbon (C):N ratios and, having historically received extremely high levels of N deposition, may exhibit legacy impacts of deposition on nutrient availability and decomposition. We utilized four sites along a modeled gradient of N deposition in central Appalachia to assess contemporary ESEs in bulk soil under Acer rubrum L., Betula alleghaniensis Britt., and Picea rubens Sarg. in May, June, and July 2016. Increasing N deposition led to increases in organic fraction C and N and decreases in phosphorus (P). Sites receiving higher N also exhibited greater mineral fraction C, N, and P. ESEs were highest in organic fractions with acid phosphatases (AP) exhibiting the highest activity. There was little influence of N deposition on organic fraction ESEs, but strong evidence for a positive relationship between N deposition and activities of AP, β-glucosidases (BG), and chitinase (NAG) in mineral fractions. Species effects on ESEs were present with high AP in organic fractions under spruce and high mineral fraction fungal laccase (LAC) under birch. The sampling season demonstrated little effect on ESEs. ESEs were more strongly influenced by plot-level factors, such as tree species diversity and abundance of ectomycorrhizal (ECM) tree species, than temporal or soil factors or nutrient status related to modeled cumulative N deposition across these sites. Decreases in AP, BG, and NAG activities with greater abundance of broadleaf deciduous species and increases in activities with ECM host abundance indicate that microbial communities driven by these plant functional groups are responsible for the differences in ESEs observed in these high-elevation mixed red spruce stands.