The authors report that nitrogen-doped graphene oxide (NGO) catalyzes the oxidative decomposition of the fluorophore Rhodamine B (RhB) by hydrogen peroxide. The catalytic decomposition of hydrogen peroxide yields free hydroxyl radicals that destroy RhB so that the intensity of the yellow fluorescence is reduced. Nitrogen doping enhances the electronic and optical properties and surface chemical reactivities of GO such as widening of bandgap, increase in conductivity, enhanced quenching and adsorbing capabilities etc. The catalytic properties of NGO are attributed to its large specific surface and high electron affinity of nitrogen atoms. The chemical and structural properties of GO and NGO were characterized by XRD, FTIR, SEM, UV-visible and Raman spectroscopies. The method was optimized by varying the concentration of RhB, nitrogen dopant and hydrogen peroxide. The fluorescent probe, best operated at excitation/emission wavelengths of 554/577nm, allows hydrogen peroxide to be determined in concentrations as low as 94 pM with a linear range spanning from 1nM to 1μM. Graphical abstract Schematic illustration of a fluorescence quenching method for the determination of H2O2. Upon addition of H2O2, nitrogen-doped graphene oxide (NGO) catalyzes the oxidation of Rhodamine B dye due to hydroxyl radical generation, which leads to a sensitive quenchometric methd for H2 O2.
Read full abstract