ABSTRACTA thermoelectric generator (TEG) converts thermal energy into electrical energy when temperature gradients are created across its two surfaces. Integrating the TEG with a phase change material (PCM) and radiative cooling (RC) can increase the temperature gradient across its two surfaces. In this study, a two‐layer RC paint has been developed and applied to the cold side of a TEG, and its performance was compared with TEG‐white paint and TEG‐no paint. The RC lowers the temperature of the cold side by 3.5°C and 4.7°C compared to TEGs with white paint and no paint, respectively. Integrating PCM with TEG–RC ensured a high electrical output, enabling continuous power for a typical weather sensor. The PCM–TEG–RC generated 2.7and 0.61 mW during summer and winter days in Istanbul, and nighttime outputs of 0.302 W and 0.395 mW, respectively. Despite similar costs, the electrical performance of TEG–RC was nearly double that of the TEG‐white paint. It has also been determined that a storage capacitor with a value of 0.5 F can provide 24‐h power backup to the typical weather sensor.