To address the growing demand for high-efficiency heat exchangers in refrigeration, air conditioning, and heat pump systems, this study investigates the boiling heat transfer performance of R513A (an environmentally friendly azeotropic refrigerant) in horizontal microfin and smooth tubes with a 5.89 mm ID. Using 3D transient simulations, the tubes were analyzed under operating conditions of a mass flux of 50 kg/(m2·s) and a saturation temperature of 5 °C. The simulation results were validated against experimental data within a ±10 % error margin, confirming the reliability of model. At the constant mass flux, both the microfin and smooth tubes exhibited predominantly wavy-stratified flow, where surface tension dominated bubble flow. Gravity effects became more pronounced in slug, plug, and wavy-stratified flows. Structural parameters of microfin tubes, such as helical angle, fin height and number of fins, significantly affected flow boiling heat transfer. Increasing the helical angle had limited effect on enhancing boiling heat transfer performance. Microfin tube 4# (helical angle of 28°) exhibited an 11.27 % reduction in the boiling heat transfer coefficient compared to microfin tube 2#, due to the uneven distribution of liquid droplets in the vapor phase further reduced liquid film continuity and thickness. Microfin tube 5# (fin height of 0.30 mm) achieved an average mainstream velocity 1.36 times that of tube 2# (fin height of 0.17 mm), enhancing heat transfer. Conversely, microfin tube 6# with 54 fins showed local drying, negatively impacting its heat transfer efficiency.In summary, microfin tube 5# exhibited the optimal heat transfer characteristics.
Read full abstract