Abstract
The printed circuit heat exchanger (PCHE) is a high-efficiency and compact mini-channel heat exchanger. Due to the large number of fine channels, it is difficult to conduct the flow and heat transfer numerical simulation of the entire heat exchanger based on the actual channels, which requires a lot of computational resource and time. In this paper, a simplified multi-scale numerical method with a non-equilibrium porous media model (NOPM) is proposed to study the flow and heat transfer performance of PCHE at high temperature and pressure. The pressure field, velocity field and temperature field of NOPM and actual multi-channel model (MC) under different working conditions are compared to study the adaptability of NOPM for the PCHE. The results indicate that the NOPM can accurately predict the flow and heat transfer performance under PCHE configurations with a large number of channels. However, as the channel number decreases, the relative errors in the temperature and pressure prediction significantly increase due to the increased flow maldistribution. Similarly, the NOPM can well predict the overall temperature distribution of the PCHE solid when the channel number is numerous. This work could support accurate thermal design, and provide accurate temperature field for the thermal stress analysis of PCHE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.