The optically stimulated luminescence (OSL) response of Al2O3:C to high doses of gamma or beta irradiation can be used to predict the response of this material to charged particles as a function of particle fluence, particle energy and/or linear energy transfer (LET). In particular, it is predicted that track interaction effects at high particle fluences should result in linear-sublinear growth of the OSL signal. Similar considerations also predict a dependence of the fluence at which sublinearity starts upon the energy of the particles. In this work the OSL response of Al2O3:C to low-energy charged particles was investigated using protons (1, 2 and 4 MeV), carbon ions (13 MeV) and oxygen ions (10 MeV). The sublinear growth predicted above was qualitatively confirmed, but the energy dependence prediction was not. Furthermore, the efficiency of OSL production in the material after charged particle irradiation, compared to that obtained for gamma irradiation, is determined from the dose-response curves by fitting to a simple saturating exponential function. The efficiency values so obtained using this method are compared with those obtained from a conventional single-point measurement in the linear portion of the curve and found to be in good agreement. In general, the efficiency decreases as the LET of the particle increases. The present data are compared with published data obtained using high-energy charged particles and the results show that the efficiency is not a unique function of LET.
Read full abstract