The non-mechanical beam steering system is composed of multiple liquid crystal polarization gratings (LCPGs) cascaded by binary or ternary technologies. However, cascading multiple LCPGs cause the beam from one LCPG to obliquely enter the subsequent LCPGs, changing their diffraction efficiency and working voltage at different steering angles. This paper uses the elastic continuum theory of liquid crystals to simulate the tilt angle of liquid crystal molecules under different voltages. The transmission process of the beam in the system at oblique incidence is described with an extended Jones matrix, and the highest diffraction efficiency and working voltage of each LCPG at different steering angles are calculated using vector diffraction theory. It is convenient to calibrate the LCPGs' working voltage and analyze the system's diffraction characteristics. In addition, we used an improved binary cascade technology to design a LCPG non-mechanical beam steering system with a steering angle of ±10° and an angular resolution of 0.67°. Compared with binary cascade, this technology can effectively reduce the number of cascaded devices and increase the system throughput under the same maximum beam steering angle and angular resolution.
Read full abstract