Kinship testing, which involves genotyping genetic markers and comparing their profiles between individuals, holds significant applications in forensic science. However, the prevalent use of independent markers often lacks the discriminatory power to distinguish pedigrees belong to the same kinship class. While numerous studies have attempted to address this challenge through diverse approaches, the testing efficacy of high-density SNP microarrays in combination with the likelihood approach remains unclear.In this study, we further explored the utilization of linked autosomal SNPs derived from microarrays with the likelihood approach. Several SNP panels with differing numbers of loci were developed and putative pedigrees were constructed to evaluated to test their efficacy in distinguishing second-degree relationships, including grandparent-grandchild, half-siblings, and avuncular. Our findings indicate that the use of high-density SNP microarrays is theoretically feasible for discriminating second-degree relationships, with balanced classification rates ranging from 0.444 to 0.853.Moreover, to optimize the practical effectiveness of discriminating pedigrees belonging to the same kinship class, several other aspects such as adding additional SNPs or an additional relative and examining the effects of genotype errors and population selection were discussed. Our results revealed that the employment of denser marker sets with more accurate genotyping methods may be beneficial. Additionally, the inclusion of additional relatives and the selection of an appropriate reference population also appear to be crucial factors for enhancing the accuracy of kinship testing.In conclusion, our study provides insights into the potential of high-density SNPs in kinship testing and highlights the need for further optimization and examination into various factors that may contribute to enhancing testing efficacy.
Read full abstract