Abstract

Rice (Oryza sativa L.) is an important cereal that provides food for more than half of the world’s population. Besides grain yield, improving grain quality is also essential to rice breeders. Amylose content (AC), gelatinization temperature (GT) and gel consistency (GC) are considered to be three indicators for cooking and eating quality in rice. Using a genetic map of RILs derived from the super rice Liang-You-Pei-Jiu with high-density SNPs, we detected 3 QTLs for AC, 3 QTLs for GT, and 8 QTLs for GC on chromosomes 3, 4, 5, 6, 10, and 12. Wx locus, an important determinator for AC and GC, resided in one QTL cluster for AC and GC, qAC6 and qGC6 here. And a novel major QTL qGC10 on chromosome 10 was identified in both Lingshui and Hangzhou. With the BC4F2 population derived from a CSSL harboring the segment for qGC10 from 93-11 in PA64s background, it was fine mapped between two molecular markers within 181 kb region with 27 annotated genes. Quantitative real-time PCR results showed that eight genes were differentially expressed in endosperm of two parents. After DNA sequencing, only LOC_Os10g04900, which encodes a F-box domain containing protein, has 2 bp deletion in the exon of PA64s, resulting in a premature stop codon. Therefore, LOC_Os10g04900 is considered to be the most likely candidate gene for qGC10 associated with gel consistency. Identification of qGC10 provides a new genetic resource for improvement of rice quality.

Highlights

  • Rice is one of the most important crops served as staple food for more than half of world population

  • Significant differences existed in Apparant Amylose content (AAC), gelatinization temperature (GT) and gel consistency (GC) between two parents in both Lingshui and Hangzhou (Table 1 and Figure 1)

  • Normal continuous distributions of phenotypic values were observed from LS population for AAC and GC and HZ population for GC, which indicated that AAC and GC were controlled by poly-genes (Supplementary Figure S1)

Read more

Summary

Introduction

Rice is one of the most important crops served as staple food for more than half of world population. Rice planting area has reached 30.18 million hectares in 2018, and rice production was about 202.70 million tons, accounting for 25.80% of total grain output. It is a milestone in the history of rice breeding that the application of hybrid rice in 1970s (Li et al, 2016). The development of hybrid rice in China has made great contribution to the world’s rice yield. Fine Mapping of qGC10 high yield, more attention has been paid to rice quality. Compared to rice production, the development of quality breeding was relatively stunted (Su et al, 2011). With better living conditions, in order to meet the demands of people, rice quality needs to be improved by breeders

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.