Cell Painting is an established community-based microscopy-assay platform that provides high-throughput, high-content data for biological readouts. In November 2022, the JUMP-Cell Painting Consortium released the largest publicly available Cell Painting dataset with CellProfiler features, comprising more than 2 billion cell images. This dataset is designed for predicting the activity and toxicity of 115k drug compounds, with the aim to make cell images as computable as genomes and transcriptomes. In this context, our paper introduces a scalable and computationally efficient data analytics workflow created to meet the needs of researchers. This data-driven workflow facilitates the comparison of drug treatment effects through significant and biologically relevant insights. The workflow consists of two parts: first, the Equivalence score (Eq. score), a straightforward yet sophisticated metric highlighting relevant deviations from negative controls based on cell image morphology; second, the scalability of the workflow, by utilizing the Eq. scores on a large scale to predict and classify the subtle morphological changes in cell image profiles. By doing so, we show classification improvements compared to using the raw CellProfiler features on the CPJUMP1-pilot dataset on three types of perturbations.We hope that our workflow’s contributions will enhance drug screening efficiency and streamline the drug development process. As this process is resource-intensive, every incremental improvement is valuable. Through our collective efforts in advancing the understanding of high-throughput image-based data, we aim to reduce both the time and cost of developing new, life-saving treatments.
Read full abstract