The aim of this study was to produce an eco-innovative gluten-free bread with a pleasant taste and a unique formulation that includes the highest quality grains and pseudocereals (buckwheat; rice; and millet); and okara; a by-product of soy milk production. The mixture of pseudocereal and cereal flour contained buckwheat flour 45%, rice flour 33%, and millet flour 22%. Three gluten-free breads; each containing different contents of gluten-free flour (90%, 80%, and 70%, respectively); okara (10%, 20%, and 30%, respectively); and a control sample (without okara); were prepared and subjected to sensory evaluation. The okara-enriched gluten-free bread with the highest sensory score was selected for further analysis of physico-chemical (total proteins; total carbohydrates; insoluble fiber; soluble fiber; sugars; total lipids; saturated fatty acids; and salt) and functional properties (total phenolic content and antioxidant properties). The highest sensory scores were obtained for 30% okara-enriched gluten-free bread including taste; shape; odor; chewiness; and cross-section properties; classifying this bread in the category of very good quality and excellent quality (mean score 4.30 by trained evaluators and 4.59 by consumers). This bread was characterized by a high content of dietary fiber (14%), the absence of sugar; low content of saturated fatty acids (0.8%), rich source of proteins (8.8%) and certain minerals (e.g.,; iron; zinc); and low energy value (136.37 kcal/100g DW). Total phenolic content was 133.75 mgGAE/100g FW; whereas ferric reducing power; ABTS radical cation; and DPPH radical scavenging activity were 119.25 mgAA/100g FW; 86.80 mgTrolox/100g FW; and 49.92 mgTrolox/100g FW; respectively. Okara addition in gluten-free bread production enables the formulation of high-nutritive; good antioxidative; low-energy bread; and better soy milk waste management.