In this study, we investigated the effect of sevoflurane on cerebral blood flow (CBF) autoregulation in rats. Twenty-four male Sprague-Dawley rats were randomly assigned to receive one of the following anesthetic treatments. In Group 1 (n = 8, control) anesthesia was maintained using fentanyl (25 microg x kg(-1) x h(-1)) and N2O/O2 (fraction of inspired oxygen 0.33). In Group 2 (n = 8) and Group 3 (n = 8), anesthesia was maintained using 2% sevoflurane (1 minimum alveolar anesthetic concentration [MAC]) and 2 MAC sevoflurane (4 vol%) in O2/air (fraction of inspired oxygen 0.33), respectively. Cortical CBF autoregulation was measured during graded hemorrhage within the mean arterial pressure (MAP) range of 100-30 mm Hg using laser Doppler flowmetry. CBF was constant with fentanyl/ N2O (Group 1) and 1 MAC sevoflurane (Group 2) within the MAP range of 100-40 mm Hg. In Group 3 (2 MAC sevoflurane), CBF decreased as a linear function of hemorrhagic hypotension. These results indicate that CBF autoregulation was intact during 1 MAC sevoflurane. In contrast, CBF autoregulation was impaired with 2 MAC sevoflurane. This is probably related to a reduction of baseline cerebrovascular tone with higher concentrations of sevoflurane, which results in a decreased capacity of autoregulatory cerebrovascular dilation during hemorrhage. The purpose of the present study was to investigate the effect of sevoflurane on cerebral blood flow autoregulation in rats. Cerebral blood flow autoregulation was intact with 1 minimum alveolar anesthetic concentration sevoflurane but was impaired with 2 minimum alveolar anesthetic concentration sevoflurane.
Read full abstract