Abstract Stratocumulus occur in closed- or open-cell states, which tend to be associated with high or low cloud cover and the absence or presence of precipitation, respectively. Thus, the transition between these states has substantial implications for the role of this cloud type in Earth’s radiation budget. In this study, we analyze transitions between these states using an ensemble of 127 large-eddy simulations, covering a wide range of conditions. Our analysis is focused on the behavior of these clouds in a cloud fraction (fc) scene albedo (A) phase space, which has been shown in previous studies to be a useful framework for interpreting system behavior. For the transition from closed to open cells, we find that precipitation creates narrower clouds and scavenges cloud droplets for all fc. However, precipitation decreases the cloud depth for fc > 0.8 only, causing a rapid decrease in A. For fc < 0.8, the cloud depth actually increases due to mesoscale organization of the cloud field. As the cloud deepening balances the effects of cloud droplet scavenging in terms of influence on A, changes in A are determined by the decreasing fc only, causing a linear decrease in A for fc < 0.8. For the transition from open to closed cells, we find that longwave radiative cooling drives the cloud development, with cloud widening dominating for fc < 0.5. For fc > 0.5, clouds begin to deepen gradually due to the decreasing efficiency of lateral expansion. The smooth switch between cloud widening and deepening leads to a more gentle change in A compared to the transitions under precipitating conditions. Significance Statement By reflecting a substantial fraction of solar shortwave radiation back to space, shallow clouds constitute a major cooling agent in Earth’s radiation budget. To constrain this effect, a profound understanding of cloud cover and cloud albedo is necessary. In this study, we analyze the processes that drive the variability in these cloud properties in stratocumulus clouds, a very common cloud type covering approximately 20% of the globe. For these clouds, we show that changes from low to high or high to low cloud cover are different due to the underlying cloud micro- and macrophysics, elucidating this crucial aspect of aerosol–cloud–climate interactions.
Read full abstract