Abstract

Abstract Extratropical cyclones (ETCs) produce most of the winter precipitation at midlatitudes and are often associated with the most extreme winter weather events. For climate models to accurately predict the occurrence and severity of these extreme events in a changing climate, they need to accurately represent moist processes in general and ice processes in particular. To provide an observational constraint for model evaluation, because cloud cover and precipitation are prevalent in warm-frontal regions, a compositing method is applied to ice retrievals from satellite observations to explore the ice distribution across warm fronts in both hemispheres. Ice water path (IWP) and its variability are compared between Northern Hemisphere (NH) and Southern Hemisphere (SH) warm fronts for different ETC-wide characteristics, as well as for different ETC origination regions. Results reveal that warm-frontal IWP and its variability tend to be higher in the NH than the SH, even when controlling for the ETC strength and environmental precipitable water (PW). IWP differences between NH and SH are found to be primarily related to where the cyclones originate. As the intertropical convergence zone is shifted north, ETCs that originate close to the northern tropics have more PW than those that originate close to the southern tropics. This, in turn, seems to lead to larger IWP in NH frontal clouds than in the SH frontal clouds at a later time. This highlights the importance, for ice amounts generated in warm-frontal regions, of the environmental conditions that an ETC encounters during its genesis phase. Significance Statement Extratropical cyclones (ETCs) are responsible for most of the winter precipitation in the midlatitudes and are often associated with severe winter weather events. In order for climate models to accurately predict these extreme events in a changing climate, they need to correctly represent moist processes, especially those involving ice. To evaluate and improve these models, we apply a compositing method to satellite observations of ice profiles in warm-frontal regions, which are known for having high cloud cover and precipitation. This helps us understand the distribution of ice across warm fronts in both the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We compare the ice water path (IWP) and its variability between NH and SH warm fronts, considering different characteristics of ETCs and their formation regions. Our findings show that NH warm fronts generally contain more ice, and the amount varies a lot more across warm fronts than for SH warm fronts. This is true even when accounting for the strength of the cyclones and the moisture available to them. These differences in IWP between NH and SH are found to be primarily related to the locations where the cyclones originate. As the intertropical convergence zone (ITCZ) is shifted northward, ETCs originating closer to the northern tropics tend to have more moisture available to them than those originating closer to the southern tropics. This leads to greater ice amounts in NH frontal clouds compared to SH frontal clouds at a later time. These results emphasize the importance of understanding the origin of ETCs in order to accurately characterize ice processes in warm-frontal regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call