Aguama (Bromelia pinguin L.), a plant belonging to the Bromeliaceae family, possesses a rich content of organic compounds historically employed in traditional medicine. This research focuses on the sustainable synthesis of ZnO nanoparticles via an eco-friendly route using 1, 2, and 4% of Aguama peel extract. This method contributes to environmental sustainability by reducing the use of hazardous chemicals in nanoparticle production. The optical properties, including the band gap, were determined using the TAUC model through Ultraviolet–Visible Spectroscopy (UV–Vis). The photocatalytic activity was evaluated using three widely studied organic dyes (methylene blue, methyl orange, and rhodamine B) under both solar and UV radiation. The results demonstrated that the ZnO nanoparticles, characterized by a wurtzite-type crystalline structure and particle sizes ranging from 68 to 76 nm, exhibited high thermal stability and band gap values between 2.60 and 2.91 eV. These nanoparticles successfully degraded the dyes completely, with methylene blue degrading in 40 min, methyl orange in 70 min, and rhodamine B in 90 min. This study underscores the potential of Bromelia pinguin L. extract in advancing sustainable nanoparticle synthesis and its application in environmental remediation through efficient photocatalysis.
Read full abstract