In site chromium (Cr) contaminated soil characterized by high alkalinity and carbonate content, protons are not effectively targeted for Cr(III) mobilization but rather accelerate the reduction of easily transportable Cr(VI) within the acidification electrokinetic (EK) system. As an alternative, the highly alkaline extraction conditions (HAECs) maintained by anolyte regulation are explored owing to the ability to desorb strong binding Cr(VI) and form anionic Cr(III)-hydroxides (Cr(OH)4−, Cr(OH)52−). The results demonstrate that HAECs were more efficient in mobilizing ions in severe alkalinity and electrical conductivity soil compared to organic acid acidifying extraction conditions (OAECs). Simultaneously, a limited amount of soluble Cr(III) was produced; however, its transportation was hindered and more noticeable in the case of Cr(VI), displaying a distinct retention phase within the intermediate soil chamber. The antagonistic interplay between electromigration and electroosmotic flow was considered the main responsible factor. The conversion intensity of Cr(VI) to Cr(III) was inhibited at HAECs. The promising mobilization and low conversion intensity contributed to total Cr removal. At HAECs, enhanced electromigration and electroosmotic flow combined with a favorable oxidation environment may facilitate in situ delivery of oxidants, offering practical implications for the EK detoxification of high alkalinity site soil contaminated with Cr. The practicability of HAECs is likely to be enhanced when the cost-benefit balance of providing a simultaneous energy supply during site treatment is resolved.
Read full abstract