We have used dissociated, rat basal forebrain cultures to identify specific cell types that are potentially responsive to nerve growth factor (NGF). Expression of high-affinity NGF binding sites was examined. A subpopulation of cells containing choline acetyltransferase (CAT), the acetylcholine-synthesizing enzyme, exhibited high-affinity binding, employing combined immunocytochemistry and 125I-NGF radioautography. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high-affinity binding. These cells that exhibit high-affinity binding appear to be neurons since they stain positively with the neuron marker, neuron-specific enolase, and negatively with the nonneuron marker, glial fibrillary acidic protein. Our observations suggest that NGF may regulate multiple brain systems and functions that have yet to be explored. Conversely, only subsets of cholinergic or GABA neurons expressed high-affinity binding, suggesting that these transmitter populations are composed of differentially responsive subpopulations.
Read full abstract