A series of Pd/γ-Al2O3 catalysts with different additons of Pd were prepared by impregnation. The effect of calcination condition and Pd loading on catalytic performance of catalysts for one-step dimethyl ether synthesis has been investigated. The physic-chemical performance and structure of Pd/γ-Al2O3 catalysts were characterized by CO-TPD, TGA and nitrogen physisorption. The results show that the dispersion of Pd and the amount of adsorbration on the CO-bridge of Pd could be increased to by the moderate microwave heating on the catalysts, and the catalyst performance can be improved. But a large number of surface acidic sites of Pd/γ-Al2O3 are covered by highly fragmented Pd-grain, it causes DME selectivity reduced. And the excessive Pd can reduce the samples’ surface acid, decrease the dispersion of the metal Pd and block up the pore of γ-Al2O3. The CO conversion rate and DME space-time yield could reach 60.1% and 28.76 mmol·g-1·h-1 respectively at 2% Pd loading, at this time Pd/γ-Al2O3 has a high Pd activity surface and ideal acid sites.
Read full abstract