A realistic model of SU(5) × U(1)χ, embedded in SO(10) supersymmetric grand unified theory, is investigated for the emergence of a metastable cosmic string network. This network eventually decays via the Schwinger production of monopole-antimonopole pairs, subsequently generating a stochastic gravitational wave background that is compatible with the NANOGrav 15-year data. In order to avoid the monopole problem in the breaking of both SO(10) and SU(5), a non-minimal Higgs inflation scenario is incorporated. The radiative breaking of the U(1)χ symmetry at a slightly lower scale plays a pivotal role in aligning the string tension parameter with the observable range. The resultant gravitational wave spectrum not only accounts for the signal observed in the most recent pulsar timing array (PTA) experiments but is also accessible to both current and future ground-based and space-based experiments.