(Abridged) We have performed a comprehensive analysis of a sample of 20 starburst galaxies, most of them classified as Wolf-Rayet galaxies. In this paper, the last of the series, we analyze the global properties of our galaxy sample using multiwavelength data (X-ray, FUV, optical, NIR, FIR, and radio). The agreement between our Ha-based SFR and those provided by indicators at other wavelengths is remarkable, but we consider that the new Ha-based calibration provided by Calzetti et al. (2007) should be preferred over older calibrations. The FUV-based SFR provides a powerful tool to analyze the star-formation activity in both global and local scales independently to the Ha emission. We provide empirical relationships between the ionized gas mass, neutral gas mass, dust mass, stellar mass, and dynamical mass with the B-luminosity. Although all mass estimations increase with increasing luminosity, we find important deviations to the general trend in some objects, that seem to be consequence of their particular evolutionary histories. We investigate the mass-metallicity relations and conclude that both the nature and the star-formation history are needed to understand the relationships between both properties. The majority of the galaxies follow a Schmidt-Kennicutt scaling law of star-formation that agrees with that reported in individual star-forming regions within M~51 but not with that found in normal spiral galaxies. We found a relation between the reddening coefficient and the warm dust mass indicating that the extinction is mainly internal to the galaxies. Considering all data, we found that 17 up to 20 galaxies are clearly interacting or merging with low-luminosity dwarf objects or HI clouds. We conclude that interactions do play a fundamental role in the triggering mechanism of the strong star-formation activity observed in dwarf starburst galaxies.