The effect of the Ti/Al ratio and Cr, Nb, and Hf additions on material factors, such as the grain size, second phase, la tice parameters and the axial ratio, and on mechanical properties in TiAl-base alloys has been studied. The grain size was decreased by the deviation from the stoichiometric composition o the Ti-rich side and the addition of the third elements. The Cr element was contained a little more in Ti3Al phase than in TiAl phase in two-phase Ti-rich alloys. The lattice parameters,a andc, and the axial ratio,c/a, of the binary alloys varied linearly with decreasing Al content even in the dual-phase region. The Cr addition decreased thea and c and alsoc/a. The Nb addition increased weakly thea andc andc/a. On the contrary, the Hf addition increased thea andc but decreased thec/a ratio. In the Cr added alloys, the decrease of volume of a unit cell, due to the substitution of Cr atoms for Ti and Al atoms, was larger than that expected from the difference of atom sizes. The Nb addition should decrease the volume of a unit cell, but it increased the volume. The Hf addition caused a larger increase of volume of a unit cell than that expected from the difference of atom sizes. We suggested that the Cr addition increases and the Nb and Hf additions decrease the bond strength in TiAl. The deviation from stoichiometry and the addition of third elements caused an increase of work-hardening rate. The alloys with Ti-rich composition have superior mechanical properties compared to those of alloys vith Al-rich composition. The Cr addition resulted in high solution hardening, and the Ti-47A1 3Cr (in atomic percent) alloys had the highest fracture strain of 2.7 pct in all alloys tested. The Nb addition resulted in poor ductility in both Ti- and Al-rich alloys. The Hf additions to the Ti-rich composition caused better mechanical properties than those of Al-rich alloys. Thi; trend was also similar to the Nb-added alloys. In the Hf-added alloys, the Ti-49Al-2Hf alloy has rather high ductility of about 2.15 pct. The effect of structural parameters on mechanical properties was discussed. The smaller grain size and the smaller axial ratio tended to result in larger ductility. The increase of the bond strength might improve ductility.