A hexagonal-rod growth mechanism is proposed to describe the growth behavior of the primary Cu6Sn5 phase in liquid Sn-based solder. After Sn-6.5 at.%Cu solder had been maintained at 250°C for 10 h, a large number of hexagonal-rod-type Cu6Sn5 grains were found to have separated within it. Our observations show that these hexagonal rods had side facets in the \(\{ 10\overline{1} 0\}_{\mathrm{\eta} }\) family and round ends close to the {0002}η family. Moreover, the nucleation of the hexagonal rods was studied, and the corresponding growth kinetics found to be governed by a Cu-supply-controlled mechanism rather than an interfacial-reaction-controlled or Cu-diffusion-limited mechanism. More importantly, the anisotropic growth of the Cu6Sn5 phase was confirmed to be the dominant reason for production of these primary hexagonal rods with high aspect ratio. This may represent an avenue for synthesis of nanosized Cu6Sn5 single crystals for use as anode materials in lithium-ion batteries. Additionally, our Cu6Sn5 hexagonal-rod growth mechanism may provide insight into morphological and kinetic studies on interfacial Cu6Sn5 grains and similar intermetallics.
Read full abstract