The straightforward synthesis of several Fluorinated Polycyclic Aromatic Hydrocarbons by the efficient, transition-metal-free, arene fluorine nucleophilic substitution reaction is described, and the full investigation of their liquid crystalline and optical properties reported. The key precursors for this study, i. e. 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl derivatives, were obtained in two steps from the highly selective Scholl oxidative homo-coupling of 3,4-dialkoxy-1-bromobenzene, followed by quantitative double-lithiation. In situ room temperature nucleophilic annulation with either perfluorobenzene or perfluoronaphthalene leads to 1,2,3,4-tetrafluoro-6,7,10,11-tetraalkxoytriphenylenes and 9,10,11,12,13,14-hexafluoro-2,3,6,7-tetraalkoxybenzo[f]tetraphenes, respectively, in good yields. Exploiting the same strategy, subsequent double annulations resulted in the formation of 9,18-difluoro-2,3,6,7,11,12,15,16-octa(alkoxy)tribenzo[f,k,m]tetraphenes and 9,10,19,20-tetrafluoro-2,3,6,7,12,13,16,17-octakis(hexyloxy)tetrabenzo[a,c,j,l]tetracenes, respectively. Despite the presence of only four alkoxy chains, the polar "Janus" mesogens display a columnar hexagonal mesophase over broad temperature ranges, with higher mesophase stability than the archetypical 2,3,6,7,10,11-hexa(alkoxy)triphenylenes and their hydrogenated counterparts. The improvement or induction of mesomorphism is attributed to efficient antiparallel face-to-face π-stacking driven by the establishment of non-covalent perfluoroarene-arene intermolecular interactions. The larger lipophilic discotic π-extended compounds also exhibit columnar mesomorphism, over similar temperature ranges and stability than their hydrogenated homologs. Finally, these fluorinated molecules form stringy gels in various solvents, and show interesting solvatochromic emission properties in solution as well as strong emission in thin films and gels.
Read full abstract