In this study, 17 legacy and emerging PFASs were investigated in soil and plant leaves near a valley-type landfill, which has been in operation for over 20 years. ΣPFASs concentrations ranged from 5.31 to 108 ng/g dw and 11.9 to 115 ng/g dw in the soil and leaf samples, respectively, and perfluorobutanoic acid (PFBA) was dominant in both soil and leaves. The concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA), 6:2 chlorinated polyfluorinated ether sulfonic acid (F-53B) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) were significantly higher than those of legacy PFOA and PFOS, indicating emerging alternatives were widely applied in the region. The integrated approach of PCA analysis, field investigation of relevant industrial activities in the study area, along with the Unmix model analysis quantitatively revealed that factories producing consumer products and the landfill were the major sources of PFASs in soil, accounting for 57% of total PFASs detected. Bioaccumulation factors (BAFs) of ΣPFASs in leaves varied from 0.37 to 8.59, and higher BAFs were found in camphor leaves. The log10BAFs in all plant leaves showed a linear decrease with increasing carbon chain lengths for individual PFCAs (C4–C8). The BAF values of HFPO-DA, F-53B and 6:2 FTS were 0.01–3.39, 0.04–6.15 and 0.01–6.33, respectively. The human health risk assessment of EDIs showed a decreasing trend with the increasing carbon chain lengths of PFCAs (C4–C9), and the PFASs EDI indicated further study on the human health risk via vegetable consumption be warranted.
Read full abstract