LiNbO(3) (LN), corundum (cor), and hexagonal (hex) phases of (In(1-x)M(x))MO(3) (x = 0.143; M = Fe(0.5)Mn(0.5)) were prepared. Their crystal structures were investigated with synchrotron X-ray powder diffraction, and their properties were studied by differential thermal analysis, magnetic measurements, and Mössbauer spectroscopy. The LN-phase was prepared at high pressure of 6 GPa and 1770 K; it crystallizes in space group R3c with a = 5.25054(7) Å, c = 13.96084(17) Å, and has a long-range antiferromagnetic ordering near T(N) = 270 K. The cor- and hex-phases were obtained at ambient pressure by heating the LN-phase in air up to 870 and 1220 K, respectively. The cor-phase crystallizes in space group R-3c with a = 5.25047(10) Å, c = 14.0750(2) Å, and the hex-phase in space group P6(3)/mmc with a = 3.34340(18) Å, c = 11.8734(5) Å. T(N) of the cor-phase is about 200 K, and T(N) of the hex-phase is about 140 K. During irreversible transformations of LN-(In(1-x)M(x))MO(3) with the (partial) cation ordering, the In(3+), Mn(3+), and Fe(3+) cations become completely disordered in one crystallographic site of the corundum structure, and then they are (partially) ordered again in the hex-phase. LN-(In(1-x)M(x))MO(3) exhibits a reversible transformation to a perovskite GdFeO(3)-type structure (space group Pnma; a = 5.2946(3) Å, b = 7.5339(4) Å, c = 5.0739(2) Å at 10.3 GPa) at room temperature and pressure of about 5 GPa.
Read full abstract