Energy-levels well-matched direct Z-scheme ZnNiNdO/CdS heterojunction was successfully fabricated using facile co-precipitation and ultra-sonication techniques and characterized with XRD, FTIR, Raman, PL, UV-vis, and FE-SEM. The XRD diffractograms confirmed the co-doping of Ni-Nd in ZnO and the formation of heterostructured nanocomposite. FTIR and Raman data showed the presence of metal-oxygen vibration and optical phonon modes of ZnO and CdS. FE-SEM images exhibited the network type morphology. The energy bandgap was redshifted by co-doping (3.37-2.9eV) and was further reduced (2.6eV) by making a composite with CdS. The ZnNiNdO/CdS catalyst degraded 99.7, 49, 96.6, 98.6, and 98.6% methylene blue (MB), p-nitroaniline (P-Nitro), methyl orange (MO), methyl red (MR), and rhodamine B (RhB) dyes under 50min sunlight irradiation. Moreover, ZnNiNdO/CdS showed intense inhibition activity towards Staphylococcus aureus, Escherichia coli, Proteus vulgaris, and Pseudomonas aeruginosa bacterial strains with maximum inhibition zone diameters 30, 33, 27, and 31mm, respectively. The synergistic effects arising from band alignment can lead to efficient vectorial charge separation, transportation, and lower recombination of photoinduced charge carriers, ultimately boosting photocatalytic and antibacterial performance. The ZnNiNdO/CdS photocatalyst has higher stability up to the 7th cycle towards MB dye with ~ 5% deficit in degradation efficiency. The higher generation of superoxide and hydroxyl radical was confirmed by species trapping experiments responsible for photodegradation of dyes molecules. Furthermore, the results showed that the photocatalytic and antibacterial performance of pristine ZnO can be enhanced by co-doping and tuning energy bandgap.