This paper presents the numerical simulation of the displacement distribution in the source of the 2011 Tohoku earthquake, based on the following assumptions on the geometry and mechanics of the source, and features of the subduction zone structure: displacement in the source is determined by specifying a reduced friction coefficient on the plate interface, considering heterogeneous initial stress state of the medium; source is considered in the framework of the Lay–Kanamori model as two consecutive subsources with deep and shallow location; a nonlinear elasto-plastic model of behavior of the medium under the Mohr–Coulomb yield criterion is applied. For the numerical modeling, a program code FLAC 3D implementing an explicit finite-difference scheme solution is used. The resulting lithosphere displacement distribution was used for computation of the tsunami source for given earthquake. The numerical simulation of the corresponding tsunami wave field was performed.
Read full abstract