The pursuit of sustainable energy solutions has driven extensive research into efficient and cost-effective water-splitting techniques. This study introduces a straightforward method employing nickel molybdenum oxide NiMoO4 (NMO) nanorods integrated with graphitic carbon nitride (g-CN) sheets as promising catalysts for water splitting. The integrated coupling between NMO nanorods and g-CN leverages the distinctive properties of both materials to boost robustness as well as effectiveness in catalysis for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). We systematically optimized the nanostructure by adjusting the reduction annealing temperature during calcination to improve HER and OER activities. The NMO@g-CN-600 nanostructured catalyst demonstrates exceptional electrochemical HER activity in acidic media, with an overpotential of 148 mV at 10 mA cm-2 current density, which is approximately 2.72 times lower than that of bare NMO and 2.97 times lower than pristine g-CN catalysts. Under alkaline conditions, the NMO@g-CN-600 nanostructured catalyst exhibited superior OER activity with an overpotential of 252 mV to reach a current density of 10 mA cm-2, outperforming bare NMO and pristine g-CN catalysts. Additionally, the nanostructured catalyst demonstrated excellent long-term electrochemical stability with chronoamperometric testing over 50 h in both basic and acidic environments, showing low Tafel slopes for the OER and HER of 97 and 98 mV dec-1, respectively. Various analytical methods confirmed the successful synthesis and structural stability of prepared catalysts. The outstanding electrocatalytic properties of the NMO@g-CN-600 nanostructured catalyst position it as a feasible choice to platinum-group-based catalysts for overall water electrolysis.
Read full abstract