Recurrence or metastasis of colorectal cancer (CRC) is common following surgery and/or adjuvant therapy, particularly in patients with an advanced stage of the cancer. Identifying key molecular markers of CRC is beneficial for early diagnosis and early treatment, which may eventually improve the prognosis of patients with CRC. Isobaric mass tags for relative and absolute quantification (iTRAQ) in combination with multidimensional liquid chromatography and tandem mass spectrometry (LC-MS/MS) were used to identify differentially expressed proteins between CRC tissues and paired adjacent normal mucosa. Among the 105 patients, adenocarcinoma was the most common CRC subtype, stage III was the most common Tumor-Node-Metastasis stage and high levels of Ki-67 indicated the rapid proliferation of tumor cells in the samples. The LC-MS/MS-based iTRAQ technology identified 271 differentially expressed proteins, with 130 upregulated proteins and 141 downregulated proteins. Bioinformatics analysis revealed that golgin subfamily A member 2 (GOLGA2) and heterogeneous nuclear ribonucleoprotein D0 (hnRNPD) were located in the center of the upregulated protein network, and were closely associated with the development of CRC. The upregulation of GOLGA2 and hnRNPD was further verified in human tissues using western blotting and immunohistochemistry. GOLGA2 and hnRNPD were identified as two novels differentially expressed proteins in human CRC. Furthermore, the LC-MS/MS-based iTRAQ proteomic approach is a useful tool for searching and identifying differentially expressed proteins, and may be used to provide a comprehensive understanding of the processes that mediate the development of CRC.
Read full abstract