A transient ignition model employing a reduced chemical mechanism was developed to investigate the ignition characteristics and the gas-phase flame evolution of pulverized coal particles. The chemical percolation devolatilization (CPD) model was chosen to simulate the devolatilization process, and its accuracy was validated using a high-temperature entrained-flow reactor. Additionally, a novel method was introduced to cross-validate the single-particle simulation results with real-time OH-PLIF experimental measurements of particle streams, particularly at a large particle spacing ratio. The ignition mode was determined using the ignition delay time and volatile burnout time. Results show that as the oxygen volume fraction increases from 5% to 50% at a temperature of 1800 K, the ignition mode transitions from homogeneous ignition (GI) to heterogeneous ignition (HI). Notably, the same ignition mode was observed regardless of whether GI was defined using gas-phase temperature or OH levels. In the homo-heterogeneous ignition mode, the gas-phase flame intensity, characterized by OH levels, increases rapidly, then decreases, and re-increases slightly. The sequence of gas-phase reactions initiates with volatile combustion, followed by the co-combustion of residual volatiles and newly generated CO, and culminates in the combustion of CO itself. Online experimental findings confirmed that CO originates from char oxidation. Throughout this process, the gas-phase flame front extends outward until the volatiles are consumed.
Read full abstract