During the rice milling process, single and continuous compression occurs between brown rice and the processing parts. When the external load exceeds the yield limit of brown rice, brown rice kernels are damaged; with an increase in compression deformation or the extent of compression, the amount of damage to the kernels expands and accumulates, ultimately leading to the fracture and breakage of kernels. In order to investigate the mechanical compression damage characteristics of brown rice kernels under real-world working conditions, this study constructs an elastic-plastic compression model and a continuous damage model of brown rice kernels based on Hertz theory and continuous damage theory; the accuracy of this model is verified through experiments, and the relevant processing critical parameters are calculated. In this study, three varieties of brown rice kernels are taken as the research object, and mechanical compression tests are carried out using a texture apparatus; finally, the test data are analysed and calculated by combining them with the theoretical model to obtain the relevant critical parameters of damage. The results of the single compression crushing test of brown rice kernels showed that the maximum destructive forces Fc in the single compression of Hunan Early indica 45, Hunan Glutinous 28, and Southern Japonica 518 kernels were 134.77 ± 11.20 N, 115.64 ± 4.35 N, and 115.84 ± 5.89 N, respectively; the maximum crushing deformations αc in the single compression crushing test were 0.51 ± 0.04 mm, 0.43 ± 0.01 mm, and 0.48 ± 0.17 mm, respectively; and the critical average deformations αs of elasticity-plasticity deformation were 0.224 mm, 0.267 mm, and 0.280 mm, respectively. The results of the continuous compression crushing test of brown rice kernels showed that the critical deformations αd of successive compression damage formation were 0.224 mm, 0.267 mm, and 0.280 mm, and the deformation ratios δ of compression damage were 12.24%, 14.35%, and 12.84%. From the test results, it can be seen that the continuous application of compression load does not result in the crushing of kernels if the compression deformation is less than αd during mechanical compression. The continuous application of compressive loads can lead to fragmentation of the kernels if the compressive deformation exceeds αd; the larger the compression variant, the less compression is required for crushing. If the compression deformation exceeds αc, then a single compressive load can directly fragment the kernels. Therefore, the load employed during rice milling should be based on the variety of brown rice used in order to prevent brown rice deformation, which should be less than αd, and the maximum load should not exceed Fc. The results of this study provide a theoretical reference for the structure and parameter optimisation of a rice milling machine.