Multivariate polynomial interpolation plays a crucial role both in scientific computation and engineering application. Exploring the structure of the D-invariant (closed under differentiation) polynomial subspaces has significant meaning for multivariate Hermite-type interpolation (especially ideal interpolation). We analyze the structure of a D-invariant polynomial subspace Pn in terms of Cartesian tensors, where Pn is a subspace with a maximal total degree equal to n,n≥1. For an arbitrary homogeneous polynomial p(k) of total degree k in Pn, p(k) can be rewritten as the inner products of a kth order symmetric Cartesian tensor and k column vectors of indeterminates. We show that p(k) can be determined by all polynomials of a total degree one in Pn. Namely, if we treat all linear polynomials on the basis of Pn as a column vector, then this vector can be written as a product of a coefficient matrix A(1) and a column vector of indeterminates; our main result shows that the kth order symmetric Cartesian tensor corresponds to p(k) is a product of some so-called relational matrices and A(1).