Consider Ztf(u)=∫0tuf(Ns) ds, t>0, u∈[0, 1], where N=(Nt)t∈ℝ is a normal process and f is a measurable real-valued function satisfying Ef(N0)2<∞ and Ef(N0)=0. If the dependence is sufficiently weak Hariz [J. Multivariate Anal. 80 (2002) 191–216] showed that Ztf/t1/2 converges in distribution to a multiple of standard Brownian motion as t→∞. If the dependence is sufficiently strong, then Zt/(EZt(1)2)1/2 converges in distribution to a higher order Hermite process as t→∞ by a result by Taqqu [Wahrsch. Verw. Gebiete 50 (1979) 53–83]. When passing from weak to strong dependence, a unique situation encompassed by neither results is encountered. In this paper, we investigate this situation in detail and show that the limiting process is still a Brownian motion, but a nonstandard norming is required. We apply our result to some functionals of fractional Brownian motion which arise in time series. For all Hurst indices H∈(0, 1), we give their limiting distributions. In this context, we show that the known results are only applicable to H<3/4 and H>3/4, respectively, whereas our result covers H=3/4.
Read full abstract