A new subalgebra of loop algebra A ̃ 1 is first constructed. Then a new Lax pair is presented, whose compatibility gives rise to a new Liouville integrable system(called a major result), possessing bi-Hamiltonian structures. It is remarkable that two symplectic operators obtained in this paper are directly constructed in terms of the recurrence relations. As reduction cases of the new integrable system obtained, the famous AKNS hierarchy and the KN hierarchy are obtained, respectively. Second, we prove a conjugate operator of a recurrence operator is a hereditary symmetry. Finally, we construct a high dimension loop algebra G to obtain an integrable coupling system of the major result by making use of Tu scheme. In addition, we find the major result obtained is a unified expressing integrable model of both the AKNS and KN hierarchies, of course, we may also regard the major result as an expanding integrable model of the AKNS and KN hierarchies. Thus, we succeed to find an example of expanding integrable models being Liouville integrable.