Relevance. The consumption of caffeine-containing food in the modern world must necessarily be safe for humans, including should not affect the hereditary material of the body. Objective: to determine the possible effect of caffeine at the cytogenetic level by the micronucleus method on erythrocytes. Materials and Methods. The objects for the study were non-linear mice, which were divided into 6 groups - one control group and 5 experimental groups. The first experimental group and the second in the experiment received caffeine in doses of 40 mg/kg and 100 mg/kg.The control group received saline. Caffeine was administered orally. The mutagen (dioxidine) was injected intraperitoneally. On the 5th day of the experimental study, we performed blood sampling for cytogenetic analysis. Results and Discussion. Our study of the caffeine preparation made it possible to determine the following patterns. Firstly, when administered within 5 days, caffeine at a dose of 40 and 100 mg/kg did not cause an increase in the number of micronuclei in erythrocytes in mice. Secondly, the combined use of caffeine (both at a dose of 40mg/kgand at a dose of 100 mg / kg) and dioxidine significantly increased the level of micronuclei in comparison with the control group. Thirdly, caffeine at a dose of 40mg/kgdid not increase the mutagenic activity of dioxidine, but a dose of caffeine of 100mg/kgwhen combined with a mutagen led to a significant increase in the level of cytogenetic damage. Conclusion. According to our data, caffeine in the experimental study was not a mutagen, but at a dose of 100 mg/kg it represented a comutagenic effect.