Pneumococcal conjugate vaccines (PCVs), which have been in population-wide use in children for over two decades now, are highly efficacious in preventing life threatening pneumococcal infections. The strong herd effect of PCVs through reduction in pneumococcal nasopharyngeal carriage in vaccinated children prevents disease in adults as well. Since 7vPCV, which was the first PCV used widely, several new PCVs with each adding more serotypes have been developed. These new PCVs have been approved using immune-bridging criteria based on an aggregate correlate of protection (Cp) derived from vaccine efficacy and antibody responses data from early PCV trials. This Cp that the World Health Organization (WHO) accepts for assessing new PCVs for which it is impracticable to undertake placebo-controlled trials with clinical outcomes is 0.35 μg mL–1 of enzyme-linked immunosorbent assay (ELISA) immunoglobulin G (IgG). Effectiveness and antibody response data more recently of 13vPCV has led to developing Cp for each individual vaccine serotype, that, for some, varies considerably to 0.35 μg mL–1. In trials of newest PCVs, such as 15vPCV and 20vPCV, the comparator used is 13vPCV that has, in turn, been licensed using immune bridging, which leads to potential ‘downward-drift’ risk of protection from the new PCVs. This and the data that have emerged on serotype replacement disease and dosing schedules makes it important to review and rethink how new PCVs are assessed, their clinical benefits are inferred and vaccination programs are designed.
Read full abstract