To explore the value of machine learning (ML) models based on contrast-enhanced cone-beam breast computed tomography (CE-CBBCT) radiomics features for the preoperative prediction of human epidermal growth factor receptor 2 (HER2)-low expression breast cancer (BC). Fifty-six patients with HER2-negative invasive BC who underwent preoperative CE-CBBCT were prospectively analyzed. Patients were randomly divided into training and validation cohorts at approximately 7:3. A total of 1046 quantitative radiomic features were extracted from CE-CBBCT images and normalized using z-scores. The Pearson correlation coefficient and recursive feature elimination were used to identify the optimal features. Six ML models were constructed based on the selected features: linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), logistic regression (LR), AdaBoost (AB), and decision tree (DT). To evaluate the performance of these models, receiver operating characteristic curves and area under the curve (AUC) were used. Seven features were selected as the optimal features for constructing the ML models. In the training cohort, the AUC values for SVM, LDA, RF, LR, AB, and DT were 0.984, 0.981, 1.000, 0.970, 1.000, and 1.000, respectively. In the validation cohort, the AUC values for the SVM, LDA, RF, LR, AB, and DT were 0.859, 0.880, 0.781, 0.880, 0.750, and 0.713, respectively. Among all ML models, the LDA and LR models demonstrated the best performance. The DeLong test showed that there were no significant differences among the receiver operating characteristic curves in all ML models in the training cohort (P > .05); however, in the validation cohort, the DeLong test showed that the differences between the AUCs of LDA and RF, AB, and DT were statistically significant (P = .037, .003, .046). The AUCs of LR and RF, AB, and DT were statistically significant (P = .023, .005, .030). Nevertheless, no statistically significant differences were observed when compared to the other ML models. ML models based on CE-CBBCT radiomics features achieved excellent performance in the preoperative prediction of HER2-low BC and could potentially serve as an effective tool to assist in precise and personalized targeted therapy.