Fundamental complications of insulin resistance and type 2 diabetes include the development of nonalcoholic fatty liver disease and an atherogenic fasting dyslipidemic profile, primarily due to increases in hepatic very-low-density lipoprotein (VLDL) production. Recently, central glucagon-like peptide-2 receptor (GLP2R) signaling has been implicated in regulating hepatic insulin sensitivity; however, its role in hepatic lipid and lipoprotein metabolism is unknown. We investigated the role of glucagon-like peptide-2 (GLP-2) in regulating hepatic lipid and lipoprotein metabolism in Syrian golden hamsters, C57BL/6J mice, and Glp2r-/- mice consuming either a normal chow or high-fat diet (HFD). In the chow-fed hamsters, IP GLP-2 administration significantly increased fasting dyslipidemia, hepatic VLDL production, and the expression of key genes involved in hepatic de novo lipogenesis. In HFD-fed hamsters and chow-fed mice, GLP-2 administration exacerbated or induced hepatic lipid accumulation. HFD-fed Glp2r-/- mice displayed reduced glucose tolerance, VLDL secretion, and microsomal transfer protein lipid transfer activity, as well as exacerbated fatty liver. Thus, we conclude that GLP-2 plays a lipogenic role in the liver by increasing lipogenic gene expression and inducing hepatic steatosis, fasting dyslipidemia, and VLDL overproduction. In contrast, the lack of Glp2r appears to interfere with VLDL secretion, resulting in enhanced hepatic lipid accumulation. These studies have uncovered a role for GLP-2 in maintaining hepatic lipid and lipoprotein homeostasis.
Read full abstract