Females are more protected against insulin resistance and cardiovascular disease compared with males of the same age or BMI, and this relative protection is diminished in postmenopausal women, attributable to a loss in estrogen signaling (1–4). Evidence from genetic animal models further points to the beneficial effects of estrogen signaling via estrogen receptor-α (ERα) in regard to glucose homeostasis in health and metabolic diseases (5). Mice harboring whole-body deletion of ERα (ERαKO) reveal that estrogen signaling through this receptor regulates glucose homeostasis in part by modulating hepatic insulin sensitivity (6) and glucose uptake in the skeletal muscle and adipose tissue (7). Moreover, ERα signaling has been demonstrated to promote pancreatic insulin-producing β-cell function, survival, and proliferation, as well as protection from development of diabetes in mice of both sexes (8–10). Thus, estrogen is generally thought to positively regulate glucose homeostasis primarily through ERα, which is expressed in both male and female tissues, but the respective importance of nuclear and membrane ERα pools in the regulation of glucose homeostasis is not clear. ERα is predominantly characterized as a nuclear receptor and thus noted for exclusively regulating transcription of target genes. However, extranuclear ERα action or membrane compartment–initiated estrogen signaling is now widely accepted to activate different pathways occurring in the cytoplasm and nucleus. For example, membrane localization of ERα (which accounts for ∼5–10% of the ERα pool depending on cell type) facilitates membrane-initiated signaling events important for reproduction and vascular physiology (11) as well as β-cell function and survival (12). Although it is clear that ERα positively regulates glucose homeostasis, the distinct and overlapping contributions of the extranuclear and nuclear pool of ERα remain unknown. Therefore, mouse models specifically engineered to have only nuclear or membrane ERα action are necessary to delineate specific ERα functions related to …
Read full abstract