Iron (Fe) is a co-factor for enzymes of the developing brain necessitating sufficient supply. We investigated the effects of administering ferric derisomaltose/Fe isomaltoside (FDI) subcutaneously to Fe-deficient (ID) pregnant rats on cerebral and hepatic concentrations of essential metals and the expression of iron-relevant genes. Pregnant rats subjected to ID were injected with FDI on the day of mating (E0), 14 days into pregnancy (E14), or the day of birth (postnatal (P0)). The efficacy was evaluated by determination of cerebral and hepatic Fe, copper (Cu), and zinc (Zn) and gene expression of ferroportin, hepcidin, and ferritin H + L in pups on P0 and as adults on P70. Females fed an ID diet (5.2 mg/kg Fe) had offspring with significantly lower cerebral and hepatic Fe compared to female controls fed a standard diet (158 mg/kg Fe). Cerebral Cu increased irrespective of supplying a standard diet or administering FDI combined with the standard diet. Hepatic hepcidin mRNA was significantly lower following ID. Cerebral hepcidin mRNA was hardly detectable irrespective of iron status. In conclusion, administering FDI subcutaneously to ID pregnant rats on E0 normalizes fetal cerebral and hepatic Fe. When applied at later gestational ages, supplementation with additional Fe to the offspring is needed to normalize cerebral and hepatic Fe.
Read full abstract