Amyloid fibrils represent a pathological state of protein polymer that is closely associated with various neurodegenerative diseases. Polysaccharides have a prominent role in recognizing amyloid fibrils and mediating their pathogenicity. However, the mechanism underlying the amyloid-polysaccharide interaction remains elusive. We also do not know its impact on the structure and pathology of formed fibrils. Here, we used cryo-electron microscopy to analyze the atomic structures of mature α-synuclein (α-syn) fibrils upon binding with polymeric heparin and heparin-like oligosaccharides. The fibril structure, including the helical twist and conformation of α-syn, changed over time upon the binding of heparin but not oligosaccharides. The sulfation pattern and numbers of saccharide units are important for the binding. Similarly, negatively charged biopolymers typically interact with amyloid fibrils, including tau and various α-syn polymorphs, leading to alterations in their conformation. Moreover, we show that heparin-like oligosaccharides can not only block neuronal uptake and propagation of formed α-syn fibrils but also inhibit α-syn fibrillation. This work demonstrates a distinctive activity of heparin and biopolymers in remodeling amyloid fibrils and suggests the pharmaceutical potential of heparin-like oligosaccharides.
Read full abstract