Abstract

In the present study, click chemistry and Schiff base reactions were simultaneously applied to prepare polymer brush (PEG)-functionalized MOF materials (UiO-66-NH2) and immobilized with Ti4+ (MOF-Brush-THBA-Ti4+) for phosphopeptide analysis. The material has a detection limit of 0.5 fmol, a selectivity of 2000:1, and a loading capacity of 133 mg/g for phosphopeptides. It also demonstrated great repeatability (10 cycles) and recovery rate (96.7 ± 1.4%). During the analysis of bio-samples, 4 specific phosphopeptides were identified in endogenous breast cancer serum, while 11 phosphopeptides were identified in skimmed milk. Moreover, 47 phosphopeptides correlated with 29 phosphorylated proteins were selectively identified from normal control serum, and 66 phosphopeptides correlated with 26 phosphorylated proteins were identified from breast cancer serum. Further analysis of gene ontology (GO) revealed that the detected phosphorylated proteins associated with breast cancer included positive regulation of receptor-mediated endocytosis, proteolysis, extracellular exosome, heparin binding, and chaperone binding. These findings suggest that these associated pathways might contribute to the etiology of breast cancer. Overall, this application exhibits enormous potential in the identification of phosphorylated peptides within bio-samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.