Abstract The growing concerns surrounding the rising carbon emissions have impelled the leaders around the world to make efforts to prevent catastrophic manifestations of climate change and global warming. This has led to the resurrection of vegetal concrete building materials using biomass, which have the added benefits of carbon sequestration apart from low embodied energy and renewability. Vegetal concretes are made up of an organic or inorganic binder, and biomass originating from agro-forestry industries such as rice husk, straw bale, hemp, kenaf, cork, and so on. Hemp concrete, a variety of vegetal concrete has been widely researched and is arguably one of the most researched building materials in current times. This paper presents a review of the state-of-the-art of hemp concrete research, with a view to identifying research gaps that shall guide future research for its implementation in the fast-growing green buildings industry. The reviewed aspects of hemp concrete include properties of hemp relevant to construction, binder characteristics, mechanical properties, durability, hygric and thermal properties, environmental credentials, manufacturing processes, and current applications. Several research gaps with regards to the hydraulicity of the binder, strength and durability, and fire resistance of hemp concrete were identified. It was also established that hemp concrete has very low embodied carbon and embodied energy, making it ideal for green building applications. The paper ends with a discussion outlining the need and direction for future research on improving the manufacturing processes and mechanical performance of hemp concrete for wider adoption by the construction industry.