BackgroundCanine idiopathic pulmonary fibrosis (CIPF) is a progressive interstitial lung disease mainly affecting old West Highland white terriers (WHWTs). The aetiology of CIPF is currently unknown and pathogenesis poorly understood. A genetic basis is strongly suspected based on the breed predisposition. CIPF shares clinical and pathological features with human IPF. In human IPF, coagulation disorders favouring a local and systemic pro-thrombotic state have been demonstrated in association with disease severity and outcome. The aim of this study was to compare the systemic haemostatic, fibrinolytic and inflammatory profiles of WHWTs affected with CIPF with breed-matched controls (CTRLs). Additionally, data collected in both groups were interpreted with regard to the reference intervals (when available) to assess possible pro-thrombotic features of the WHWT breed that may be related to CIPF predisposition. A total of 14 WHWTs affected with CIPF and 20 CTRLs were included.ResultsWHWTs affected with CIPF had prolonged activated partial thromboplastine time in comparison with CTRLs (12.2 ± 0.9 s vs. 11.5 ± 0.7 s, P = 0.028), whereas results obtained in both groups were all within reference ranges. There was no significant difference between groups for the other factors assessed including plasmatic concentrations of fibrinogen, D-dimers concentration, antithrombin III activity, protein S and protein C activities, anti-factor Xa activity, activated protein C ratio, serum C-reactive protein concentration, and rotational thromboelastometry indices. Platelet count and plasmatic fibrinogen concentration were found to be above the upper limit of the reference range in almost half of the WHWTs included, independently of the disease status.ConclusionsResults of this study provide no clear evidence of an altered systemic haemostatic, fibrinolytic or inflammatory state in WHWTs affected with CIPF compared with CTRLs. The higher platelet counts and fibrinogen concentrations found in the WHWT breed may serve as predisposing factors for CIPF or simply reflect biological variation in this breed.
Read full abstract