Abstract The cannulation of blood vessels is one of the most basic and essential interventions in medical practice. A common adverse event of this procedure is miscannulation with infiltration of the second part of the vessel wall, often resulting in a perivascular hematoma. In hemodialysis patients, surgically created arteriovenous conduits are cannulated 3–4 times per week to provide sufficient blood supply to the hemodialysis machine. However, the high blood flow and pressure in these vascular access sites increase the risk of complications upon miscannulation. A novel needle system that allows for rapid automatic retraction of the needle in response to contact with blood after positioning the cannula in the blood vessel was developed to reduce the risk of miscannulation. The device can easily be incorporated into existing needle designs. The mechanical functionality of the device was validated by testing prototypes in an ex vivo system. Optimization of the needle system was performed to enhance response time and piston shape. A final prototype design was manufactured and validated. The optimal membrane composition and piston shape were determined, which resulted in a needle response time of 40 ms upon contact with fluid at a pressure of 100 mmHg (arterial pressure). Here, we have successfully designed, mechanically validated, and tested a novel automated rapid needle retraction system that allows incorporation into existing needle systems. This device could notably decrease the difficulty of vessel cannulation and the prevalence of hematoma formation.