The low transmission efficiency of ultrasonic waves in waveguides of a high acoustic impedance (referred to as dense materials), due to the impedance mismatch between the background media and the dense materials, poses a significant obstacle to practical applications of high-intensity focused ultrasound (HIFU) such as ultrasound therapy or medical imaging. To address this challenge, we present an inverse optimization scheme for fabrication of novel acoustic meta-lenses, enabling strengthened penetration and enhanced focusing of ultrasonic waves when the waves traverse barriers. Both simulation and experiment validate the effectiveness of the developed meta-lenses which are annexed to hemispherical plates, and demonstrate an enhanced transmission of the sound power by an order of magnitude compared to a scenario without the use of the meta-lens. The focal distance is reconfigurable by adjusting the geometric parameters of the meta-lenses. The proposed design philosophy is not restricted by the complexity of the target structures, and it allows the ultrasonic waves to pass through acoustic barriers with a non-uniform thickness yet maintaining efficient wave focusing. This study holds appealing applications in HIFU-enabled ultrasound imaging and therapy.
Read full abstract