Heme enzymes play a central role in a medley of reactivities within a wide variety of crucial biological systems. Their active sites are highly decorated with pivotal evolutionarily optimized non‐covalent interactions that precisely choreograph their biological functionalities with specific regio‐, stereo‐, and chemo‐selectivities. Gaining a clear comprehension of how such weak interactions within the active sites control reactivity offers powerful information to be implemented into the design of future therapeutic agents that target these heme enzymes. To shed light on such critical details pertaining to tryptophan dioxygenating heme enzymes, this study investigates the indole dioxygenation reactivities of Lewis acid‐activated heme superoxo model systems, wherein an unprecedented kinetic behavior is revealed. In that, the activated heme superoxo adduct is observed to undergo indole dioxygenation with the intermediacy of a non‐covalently organized precursor complex, which forms prior to the rate‐limiting step of the overall reaction landscape. Spectroscopic and theoretical characterization of this precursor complex draws close parallels to the ternary complex of heme dioxygenases, which has been postulated to be of crucial importance for successful 2,3‐dioxygenative cleavage of indole moieties.
Read full abstract