Abstract
Unique heme-containing tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) catalyze oxidative cleavage of the pyrrole ring of L-tryptophan (Trp). Although these two heme dioxygenases were discovered more than 40 years ago, their reaction mechanisms were still poorly understood. Encouraged by recent X-ray crystal structures, new mechanistic pathways were proposed. We performed ONIOM(B3LYP:Amber) calculations with explicit consideration of the protein environment to study various possible reaction mechanisms for bacterial TDO. The ONIOM calculations do not support the proposed mechanisms (via either formation of the dioxetane intermediate or Criegee-type rearrangement); a mechanism that is exceptional in the hemes emerges. It starts with (1) direct radical addition of a ferric-superoxide intermediate with C2 of the indole of Trp, followed by (2) ring-closure via homolytic O-O cleavage to give epoxide and ferryl-oxo (Cpd II) intermediates, (3) acid-catalyzed regiospecific ring-opening of the epoxide, (4) oxo-attack, and (5) finally C-C bond cleavage concerted with back proton transfer. The involvement of dual oxidants, ferric-superoxide and ferryl-oxo (Cpd II) intermediates, is proposed to be responsible for the dioxygenase reactivity in bacterial TDO. In particular, the not-well-recognized ferric-superoxide porphyrin intermediate is found to be capable of reacting with pi-systems via direct radical addition, an uncommon dioxygen activation in the hemes. The comparison between Xanthomonas campestris TDO and some heme as well non-heme oxygenases is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.