Exposure to potentially lethal high-dose ionizing radiation results in bone marrow suppression, known as the hematopoietic acute radiation syndrome (H-ARS), which can lead to pancytopenia and possible death from hemorrhage or infection. Medical countermeasures to protect from or mitigate the effects of radiation exposure are an ongoing medical need. We recently reported that 16,16 dimethyl prostaglandin E2 (dmPGE2) given prior to lethal irradiation protects hematopoietic stem (HSCs) and progenitor (HPCs) cells and accelerates hematopoietic recovery by attenuating mitochondrial compromise, DNA damage, apoptosis, and senescence. However, molecular mechanisms responsible for the radioprotective effects of dmPGE2 on HSCs are not well understood. In this report, we identify a crucial role for the NAD+-dependent histone deacetylase Sirtuin 1 (Sirt1) downstream of PKA and CREB in dmPGE2-dependent radioprotection of hematopoietic cells. We found that dmPGE2 increases Sirt1 expression and activity in hematopoietic cells including HSCs and pharmacologic and genetic suppression of Sirt1 attenuates the radioprotective effects of dmPGE2 on HSC and HPC function and its ability to reduce DNA damage, apoptosis, and senescence and stimulate autophagy in HSCs. DmPGE2-mediated enhancement of Sirt1 activity in irradiated mice is accompanied by epigenetic downregulation of p53 activation and inhibition of H3K9 and H4K16 acetylation at the promoters of the genes involved in DNA repair, apoptosis, and autophagy, including p53, Ku70, Ku80, LC3b, ATG7, and NF-κB. These studies expand our understanding of intracellular events that are induced by IR but prevented/attenuated by dmPGE2 and suggest that modulation of Sirt1 activity may facilitate hematopoietic recovery following hematopoietic stress. Graphical Abstract.