In concrete applications. Major/critical applications of such concrete are radiation-shielding facilities. Both steel slag and silica fume are examples of common by-product materials that can be used as a replacer of aggregates and cement. Thus, in this research work, steel slag was utilized as heavy aggregate in concrete production besides silica fume to present sustainable concrete mixtures probably with better radiation-shielding properties. Different cementitious plasters were applied on the conducted sustainable concrete mixture using different powdery materials; hematite, magnetite, barite, bentonite, and steel slag powders in addition to nano-titanium dioxide as full replacers for sand. The proposed plasters were presented to determine the optimum plaster technique in terms of static performance and attenuation capability against gamma and neutron radiations. The results exhibited that utilizing steel slag and silica fume in concrete mixtures enhanced compressive strength by up to 9.09 % compared to conventional concrete, while the addition of nano-titanium to conventional plaster led to superior enhancement in the compressive strength by up to 38.65 % relative to traditional plaster. Conversely, fully replacing conventional silica sand with the abovementioned powdery materials generally reduced the compressive strength of cementitious plasters by up to 30.83 %. However, the radiation shielding properties against Cs-137, and Co-60 energies have been enhanced by up to 20 % and 26 %, respectively.
Read full abstract